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Abstract—The distributed systems tend to be 
vulnerable to the Sybil attack. This paper proposes 
three methods to initialize the Sybil-resistant trust value 
from a social network graph. The trust value implies the 
Sybil-resistant property which is embedded in the social 
network graph, and it can be used for the admission 
control as well as for the reference value. Through the 
real social graph-based evaluation, we compare three 
methods with each other, and we find that Sybil nodes 
get just about 0.025 trust value while the average of 
trust value for honest nodes is around 0.9. 

 
Index Terms—Sybil-resistant Trust Value, Social Network 

Graph, Sybil Attack. 
 

I. INTRODUCTION 
 

As distributed systems become very popular and the 
participants inevitably cooperate with strangers, the trust 
between participants becomes essential to operate 
distributed systems properly. While some reputation 
systems [1][2] have been proposed to figure out the trust 
between participants by referring their past behaviors, it is 
still hard to judge the trust of new participants which have 
no past record. According to this, distributed systems are 
still vulnerable to the Sybil attack [3], where a single 
malicious user pretends to have multiple participants 
which are called Sybil participants. The purpose of 
creating Sybil participants is not only to subvert 
distributed systems, but also to increase the creator's 
profit abnormally. Every new Sybil participant, who does 
not have any past behavior, can avoid the restriction of 
those reputation systems for a while. When a Sybil 
participant is eventually restricted by those reputation 
systems, a malicious user simply discard the restricted 
Sybil participant and create other new Sybil participants. 

In this paper, we propose methods to initialize the 
Sybil-resistant trust value from a social network graph, for 
an individual participant of a distributed system to 
recognize the Sybil participants. The social network graph 
is corresponding to the real relationship between 
identities, and the artificially generated Sybil identities are 
barely connected to the real identities except their creators 
or themselves. This Sybil-resistant property can be 
embedded to the trust value extracted from the social 
network graph. By referring the trust value, a participant 
can evaluate the likelihood that the first-met participant is 
Sybil. The trust value can be assigned to each node in 

[0,1] where 0 means that the owner of this value most 
likely a Sybil identity.  

From now on, we explore three methods for initializing 
the Sybil-resistant trust value; Random Route Intersection 
(RRI), Random Route Tail Intersection (RRTI), and 
Random Walk Tail Intersection (RWTI). 

 
II. METHODS INITIALIZING SYBIL-RESISTANT 

TRUST VALUE 
 

A. Assumptions and overall operation 
In a social network graph, a node is mapped to the user 

identity of a participant in a distributed system. While an 
honest user has a single identity, a malicious user can 
generate multiple fake identities. Two nodes are 
connected by an undirected edge only if both of them trust 
each other. In the given social network graph, there are 
two big regions: the honest region and the Sybil region. 
The honest region is one strongly connected component 
composed of the honest nodes which collaborate with 
others honestly. That is, any two honest nodes have a path 
connecting them in the region. The Sybil region is one 
another strongly connected component composed of the 
Sybil nodes which are generated for malicious purposes. 
While each of regions is an individual fast-mixing graph 
[6], the whole social network graph is not because of the 
attack edge which is the special edge connecting the Sybil 
region to the honest region. The attack edge can be 
created if an honest node is deceived by a Sybil node.  

We note that the path from the honest region to the 
Sybil region or vice versa should pass through the attack 
edges. Also, because of the limited number of attack 
edges, it is hard that a random walk over the given social 
network graph crosses the attack edges. Subsequently, if a 
node in the honest region obtains samples in the manner 
of the random walk, it is less likely to get samples 
belonging to the Sybil region. 

Let us say that there are a suspect node S, to which we 
want to assign a trust value, and a verifier node V, which 
resides in the honest region. We assume that the verifier 
node is very trustable and hard to be compromised by 
malicious users. Both S and V get the set of samples in 
the manner of the random walk. If there is at least one 
sample contained in both S's and V's set of samples, we 
say that V accepts S. If S resides in the honest region, V 
most likely accepts S. Otherwise, if S locates in the Sybil 
region, V less likely accepts S. 

However, using only one verifier node may cause the 
subjective trust value and be a vulnerable point of attacks 
by malicious users. We use multiple verifier nodes rather 
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than single verifier in order to get more objective trust 
value and make the methods getting the trust value 
resilient to attacks. Also, we can quantify the trust value 
as (# of accepted verifiers)/l, where l is the total number 
of verifier nodes. That is, the trust value represents the 
likelihood that verifier nodes accept a suspect node, and 
the likelihood is mainly affected by the ways how to 
obtain samples. Hereafter, we describe the three different 
methods to obtain a set of samples for a suspect/verifier 
node. 

 
B. Random Route Intersection Method 

The RRI (Random Route Intersection) method 
exploits the random route [4] to get a set of samples. The 
random route is a special kind of random walk. Each node 
prepares a pre-computed random permutation as a one-to-
one mapping from incoming edges to outgoing edges. 
Since every edge can be an incoming edges or outgoing 
edges, the length of the random permutation is same to the 
number of edges of a node. A random route determines a 
next destination by referring the outgoing edge of the 
permutation corresponding to the incoming edge rather 
than by picking an outgoing edge randomly. The most 
promising property of a random route is the convergence 
property, i.e. two random routes entering a node along the 
same incoming edge will always exist along the same 
outgoing edge [4]. In order to obtain samples, a node 
initiates the random routes starting from its all outgoing 
edges, and all the visited nodes are added to the set of 
samples. 

The length of a random route, w, is the performance 
knob of RRI. As w increases, the size of the set of sample 
nodes increases, and the probability that a verifier node 
accepts a suspect node also increases. On the fast-mixing 
graph, w should be sufficiently long, such as Θ( √(n 
log(n)) ) [4] (n is the number of nodes in the given social 
graph). But when w increases in order to augment the 
average of the trust value for honest nodes, the trust value 
of Sybil nodes may increase excessively. That is, as w 
increases, the probability that a random route crosses the 
attack edges increases. Moreover, once a random route 
initiated by a Sybil node stretches into the honest region, 
the probability that a verifier node accepts the Sybil node 
increases significantly along with w. 
 
C. Random Route Tail Intersection Method 

While RRI collects all the nodes on a random route as 
the samples, the RRTI (Random Route Tail Intersection) 
method obtains a set of samples by gathering a tail which 
is the last direct edge of a random route multiple times 
[5]. That is, a node initiates a random route starting from a 
random outgoing edge and it adds the tail of the random 
route to the set of samples. The interesting property of the 
set of sample tails is that the tails are uniformly 
distributed on the fast-mixing social graph only if the 
length of the random route (w) is sufficiently long such as 
Θ( √(log(n)) ) [5]. 

RRTI gets only one tail from one random route. 
According to the Birthday Paradox, in order to ensure that 
the two set of random sample tails share at least one 
common tail with high probability, the required size of the 
set of samples, r, is approximate to Θ( √(m) ) where m is 
the number of directed edges of the fast-mixing social 
graph [5]. Subsequently, a node should initiate a random 
route r times to get r tails. In this case, a node should 
prepare r independent random permutations to get r 
completely independent tails. For each time, a random 
route uses the designated random permutation. That is, the 
random route initiated by using the Nth permutation of a 
node always uses the Nth permutation of all the other 
nodes until it meets the tail. 

Because RRTI uses shorter w such as Θ( √(log(n)) ) 
than RRI ( Θ( √(n log(n)) ) ), the probability of RRTI that 
a random route of a Sybil node crosses the attack edges 
becomes less than RRI. Even if a random route of a Sybil 
node crosses the attack edges, it can affect only few tails 
because of the convergence property of the random route.  

Despite of the excellent performance of decreasing the 
probability that a verifier node accepts a Sybil node, 
RRTI is too much memory bounded method. RRTI should 
manage r permutations for all nodes. This huge number of 
permutations incurs huge runtime memory spaces, and 
whenever the membership of the given social graph 
changes all the related tables should be updated. 
 
D. Random Walk Tail Intersection Method 

The RWTI (Random Walk Tail Intersection) method 
simply uses a random walk rather than the random route 
in order to eliminate the overhead incurred by preparing 
the huge number of permutations in RRTI. In RWTI, a 
node performs a random walk for r times to get r tails as a 
set of samples. Since there is no need to prepare huge 
number of permutations and to look up the designated 
permutation for each random walk, RWTI performs faster 
and more efficiently than RRTI. Despite losing the 
convergence property of the random route, the sufficiently 
long random walk, such as Θ( √(log(n)) ), can hold the 
same property that the tails are uniformly distributed [7]. 
The required size of the set of samples, $r$, is also similar 
to RRTI, such as Θ( √(m). 

Because the required length of a random walk and the 
required size of the set of samples for RWTI are almost 
same to RRTI, the performance of RWTI may be almost 
similar to RRTI. However, the lack of the convergence 
property might hamper the performance of RWTI. 
However, because the portion of attack edges of a node is 
very small, the probability that a node randomly selects an 
attack edge as the next destination of a random walk is 
very small. Moreover, the log-scaled length of the random 
walk is generally too short for the random walk initiated 
by a Sybil node to cross an attack edge. Because of these 
positive properties, the side effect of the random walk of 
RWTI can be limited. 
 



International Conference on SMA 2012 3

 1

 10

 100

 1000

 10000

 1  10  100

# 
of

 n
od

es

# of degree

100K graph
50K graph

Power law exp 1.7

 
Fig.1. Degree distribution of sampled social network 
graphs (50K and 100K) 

 
III. EVALUATION 

 
To evaluate the effectiveness of our methods, we used 

the crawled Facebook social graph [8]. To guarantee our 
assumptions and to speed up the evaluation process, we 
extracted the sub social graphs which are strongly 
connected components from the whole social graph by 
using forest-fire sampling technique [9]. We got two sub 
social graphs; 50K and 100K whose total number of 
directed edges are 905004 and 1861360, respectively. 
Diameter and radius of both graphs are same to 18 and 6, 
respectively. Both of the sub social graphs are power-law 
networks having $\sim1.7$ coefficient like Fig.1. We 
assume that the sub social graphs represent honest regions 
and the Sybil region is generated artificially where the 
average degree of a node is 14. The number of the 
randomly selected verifier nodes (l) set to 100. In this 
paper, we only show the results for 100K graph because 
the results for 50K graph is almost identical. 
 
A. Preliminary Results 

At first, we explored the effects of parameters of each 
method and figured out the proper setting for each method 
to assign reasonably high trust value to honest nodes and 
low trust value to Sybil nodes. The preliminary results for 
the proposed methods are shown in Fig.2, Fig.3, and 
Fig.4. In RRI, as w increases to get high trust value for 
honest nodes, the trust value for Sybil nodes increases 
moderately. Both of RRTI and RWTI is mainly affected 
by r. As r increases, the trust value increases; this follows 
the generalized Birthday Paradox. The length of a random 
route/walk (w) also affects the trust value, but it is very 
limited. We found that RWTI assigns slightly less trust 
value to honest nodes than RRTI under the same setting. 
This is because a random route implying the convergence 
property provides more uniformly distributed tails than a 
random walk. If RWTI wants to cope with it, RWTI use 
longer random walks than random routes of RRTI. 
According to this, for the rest of results, RRI uses w=200, 
RRTI uses r=2000 and w=15, and RWTI uses r=2000 and 
w=20. 
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Fig.2. Preliminary results for RRI with 100K graph. “H” 
and “S” represents honest and Sybil nodes respectively. 
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Fig.3. Preliminary results for RRTI with 100K graph. “H” 
and “S” represents honest and Sybil nodes respectively. 
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Fig.4. Preliminary results for RWTI with 100K graph. 
“H” and “S” represents honest and Sybil nodes 
respectively. 
 
B. Sybil Resistant Trust Value 
 

With the proper settings getting from the preliminary 
results, we show the CDF of Sybil-resistant trust value for 
honest nodes in Fig.5. All of three methods have the very  
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Fig.5. Distribution of Sybil-resistant trust value of honest 
nodes. 
 
similar shape; over 90\% honest nodes have higher trust 
value than 0.8, but around 10\% honest nodes have low 
trust values. We obtained this distribution of the trust 
value of honest nodes regardless of the number of 
verifiers (l). That is, despite we increased the number of 
verifiers from 100 to 1000, there is no enhancement of the 
portion of honest nodes obtaining high trust value. 

Fig.6 shows how our methods are tolerant to the Sybil 
attack increasing the size of the Sybil cluster which has 
limited number of attack edges. The assigned trust value 
for Sybil nodes decreases along with the size of Sybil 
cluster. As the size of Sybil cluster increases, a random 
route/walk wanders in the Sybil cluster longer and the 
probability that a random route/walk crosses the attack 
edge decreases.  

In RRI, some Sybil nodes may have high trust value, 
especially when the size of Sybil cluster is small. These 
Sybil nodes usually locate near the gateway Sybil node 
which is the Sybil node having an attack edge. The 
random route/walk initiated by them can cross the attack 
edge with much higher probability than the other Sybil 
nodes, and they can get higher trust value. On the other 
hand, in RRTI and RWTI, because w is very short, the 
Sybil nodes near to the gateway Sybil nodes cannot get 
high trust value. 

 
IV. RELATED WORKS 

 
There are several works to mitigate the Sybil attack by 

exploiting a social network graph [4][5][12]. They 
focused on the admission control preventing the access of 
Sybil identities. Paper [10] proposed the Sybil-resilient 
voting system and paper [11] presented the Sybil-resilient 
messaging system. Our paper focuses on evaluating the 
likelihood of Sybil node as a trust value. 
 

V. CONCLUSION 
 

We proposed three methods (RRI, RRTI, and RWTI) to  
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Fig.6. Distribution of Sybil-resistant trust value of Sybil 
nodes with various size of Sybil clusters. 
 
initialize the Sybil-resistant trust value by using the social 
network graph. All of them function effectively against 
the simple Sybil attack which has limited number of 
attack edges. Even though the Sybil attack becomes more 
sophisticated, RRTI and RWTI can be still effective. In 
the aspect of the computation cost, RRI is most efficient 
among them and RWTI is also faster and lighter than 
RRTI. Even though RWTI suffers from a slight side effect 
caused by the lack of convergence property, its 
performance compares favorably with RRTI, and it can be 
useful to the distributed systems which concern the 
memory limitation and the computation cost. 
 

REFERENCES 
  

[1] S.D. Kamvar, M.T. Schlosser and H. Garcia-molina, “The EigenTrust 
Algorithm for Reputation  Management in P2P Networks,” Proc. 12th 
WWW Conference, 2003. 

[2] A.G.P. Rahbar and O. Yang. “PowerTrust: A Robust and Scalable 
Reputation System for Trusted Peer-to-Peer Computing.” IEEE Trans. 
Parallel and Distributed Computing, Vol.18, Issue.4, April 2007 

[3] J. R. Douceur. “The sybil attack,” Proc. IPTPS 2002, pages 251-260, 
2002. 

[4] H. Yu, M. Kaminsky, P. B. Gibbons and A. Flaxman. “SybilGuard: 
Defending Against Sybil Attacks via Social Networks,” Proc. ACM 
SIGCOMM 2006, August 2006 

[5] H. Yu, P. B. Gibbons, M. Kaminsky and F. Xiao. “SybilLimit: A Near-
Optimal Social Network Defense against Sybil Attacks,” Proc IEEE 
Symposium on Security and Provacy 2008, pp. 3-17, 2008 

[6] D. J. Watts and S. H. Strogatz. “Collective dynamics of small-world 
networks”, Nature, 393(6684), 1998. 

[7] M. Mitzenmacher and E. Upfal. “Probability and Computing,” 
Cambridge University Press, 2005 

[8] M. Sirivianos, K. Kim, X. Yang, “SocialFilter Introducing Social Trust to 
Collaborative Spam Mitigation”, Proc. Infocom 2011, 2011 

[9] J. Leskovec and C. Faloutsos. “Sampling from large graphs,” Proc. ACM 
SIGKDD 2006, 2006. 

[10] N. Tran, B. Min, J. Li and L. Subramanian. “Sybil-resilient online content 
voting,” Proc. NSDI 2009, 2009 

[11] A. Mislove, A. Post, P. Druschel and K. P. Gummadi. “Ostra: Leveraging 
Trust to Thwart Unwanted Communication,” Proc. NSDI 2008, 2008 

[12] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and R. J. Anderson. 
“Sybil-resistant DHT routing,” Proc. ESORICS 2005, pages 305-318, 
2005. 

 
 
 


